EFFECTS OF BIOLOGICAL NANO-FERTILIZER ON THE MORPHOLOGICAL, PHYSIOLOGICAL AND PROLIFERATION TRAITS AND QUALITY OF *BUXUS HYRCANA* POJARK

BEHZAD KAVIANI* AND NASER NEGAHDAR¹

Department of Horticultural Science, Rasht Branch, Islamic Azad University, Rasht, Iran

Key words: Soilless culture, Fertilization, Ornamental plants, Vegetative growth

Abstract

The effect of various concentrations of biologic Nano-fertilizer special for ornamental plants (0.00, 0.60, 1.20, 1.80, 2.40 and 3.00 g per pot as drench and 0.00, 1.00, 2.00, 3.00, 4.00 and 5.00 g/l as leaf spray) on *Buxus hyrcana* Pojark were evaluated. Totally among 36 treatments, 3.00 g/pot drench + 2.00 g/l spray, also 1.80 g/pot drench + 2.00 g/l spray of Nano-fertilizer special for ornamental plants introduces as a good treatment for proliferation of *Buxus hyrcana* Pojark. The highest and the lowest concentrations of this Nano-fertilizer were no good.

Introduction

Buxus sempervirens L. or Buxus hyrcana Pojark. (Buxaceae), is a wild edible plant species (Orhan et al. 2012). Seeds are rarely used for proliferation and cuttings are commonly used. Biotechnology advances in protection and nutrition strategies for plants have attempted to provide some solutions for the problems caused by application of chemical fertilizers. Bio-fertilizers comprise environment friendly microorganisms that supply or improve availability of nutrients to promote soil fertility and crop productivity (Ghormade et al. 2011). Nanoparticles offered the advantage of effective loading due to the larger surface area, easy attachment and fast mass transfer (Ghormade et al. 2011). Organic fertilizers are now widely employed instead of chemical fertilizers (Inubushi et al. 2000). Encapsulation of fertilizers within a nanoparticle is one of these new facilities (Rai et al. 2012). Two methods of Nano-fertilizers application are practiced as foliar spraying and drenching. Foliar application of micronutrients, now a common horticultural practice, enhanced its uptake by the leaves (Martens and Westermann 1991). The mode of fertilizer application influences their efficiency and environmental impact (Ihsan et al. 2007, Matthews 2008). The aim of the present study was to evaluate the application methods and different concentrations of biological Nano-fertilizer, especially for the ornamental plants (containing microorganisms, especially phosphate solubilizing bacteria, plant growth promoter, nitrogen biological fixative, Fe and Zn) on some morphological, physiological and proliferation traits and enhancing the quality of Buxus hyrcana Pojark.

Materials and Methods

Buxus hyrcana Pojark., was used as mother plants. Cuttings with a height of 10 to 15 cm were prepared from maternal plants. Cuttings were planted in perlite for rooting. After rooting (60 days), cuttings were transferred to pots (4 kg) containing cocopeat, municipal compost and soil. Experiment had 36 plots and 108 blocks. Plots were pots containing Nano-fertilizers special for ornamental plants. Plants were grown in the greenhouse. Different ratios of Nano-fertilizer special for ornamental plants as the first experiment factor and different application methods as the second

^{*}Author for correspondence: <b.kaviani@yahoo.com>. ¹Present address: Hyrcan Agricultural Sciences and Biotechnology Research Institute, Amol, Iran.

factor were prepared. The 0.00, 0.60, 1.20, 1.80, 2.40 and 3.00 g/pot (D₁, D₂, D₃, D₄, D₅ and D₆, respectively) of fertilizer were applied as drench at the beginning of the trial and 0.00, 1.00, 2.00, 3.00, 4.00 and 5.00 g/l as spray (S_1 , S_2 , S_3 , S_4 , S_5 and S_6 , respectively) on leaves 30 days later. Spraying was repeated fortnightly. Used biological Nano-fertilizer containing bacteria enabling P uptake and biological fixation of N enriched with Fe and Zn Nano-chelates. Measurements were done on 20-month-old plants. In order to measure the dry weight of plant samples, they were dried in an oven with the temperature to 103°C for 24 hrs. The amount of productivity and proliferation rate was calculated by following formula: Productivity = Shoot numbers \times mean of shoot length; Proliferation rate = Shoot numbers \times node numbers. Total N concentration of leaf blade was determined by the Kjeldahl method. The content of P was measured by spectrophotometry. K content was calculated using flame photometry. Fe content of the samples was obtained using atomic absorption device. Chlorophyll contents of leaves were measured using spectrophotometry. The collected data were subjected to statistical analysis using a randomized factorial design. Each treatment was designed with three replicates. The mean values were compared using the least significant difference (LSD) test. Statistical tests were performed at $p \le 0.05$ using MSTAT-C. EXCEL software was used to draw graphs.

Results and Discussion

Tables 1, 2 and 3 show that the biologic fertilizer special for ornamental plants can change the most characters in *Buxus hyrcana* Pojark. The minimum plant height (35.17 cm) was obtained in D_6S_5 of biologic Nano-fertilizer especial for ornamental plants. Plant height (38.10 cm) was less in D_6S_3 . We focused on this treatment as a superior treatment to introduce. Maximum plant height (72.27 cm) was calculated in D_4S_3 . There was no positive effect between increasing plant height and increasing Nano-fertilizer concentration (Table 1). Differences of plant height and most of traits in samples grown under different concentrations of Nano-fertilizer especial for ornamental plants were significant ($p \le 0.01$) (Table 4). The results of this study indicate the role of biologic Nano-fertilizer especial for ornamental plants to change some quantity and quality characters in *Buxus hyrcana* Pojark. Given the new nanotechnology and the growing trend of studies in the technology, there are not reports about the effect of biologic Nano-fertilizer especial for ornamental plants on plant growth and development. Current study indicated that this Nanofertilizer accelerated the growth of *Buxus hyrcana* Pojark. Similar results on other biological Nano-fertilizer were reported by other researchers (Bozorghi 2012, Tarafdar *et al.* 2014).

The largest number of shoots (9.30 and 8.83) was obtained in D_4S_5 and D_6S_3 , respectively (Table 1). The smallest number of shoot (2.37) was calculated in D_4S_2 . When the plants were inoculated with 3.00 g/pot drench + 2.00 g/l spray of Nano-fertilizer (D_6S_3), the best results were observed for node number (19.33) (Table 1). The least node number (5.67 and 6.00) was calculated in D_2S_1 and D_1S_3 , respectively (Table 1). Maximum leaf number (133.30) was counted in D_6S_3 . Minimum leaf number (34.00) was obtained in control plants. The highest leaf length (1.40 cm) was calculated in D_6S_5 . The lowest leaf length (0.73 cm) was obtained in D_2S_5 . Nanofertilizer used in current study contains Fe and Zn. These two elements have key role in plant cell metabolism. Sabir *et al.* (2014) revealed that the treatment of Nano-fertilizer significantly affected the general leaf growth features of the grape. Our findings related to leaf number is severely similar to the Sabir *et al.* (2014) findings, so the least leaf was produced in control plants. The largest (7.93) and smallest (3.33) number of root were observed in D_6S_3 . Maximum root volume (178.70 ml) was measured with D_4S_6 .

				Vean o	f Values			
Treatments	Root volume	Root length	Root No./	Leaf length	Leaf No./	Node	Shoot No./	Plant height
	(ml)/plant	(cm)/plant	plant	(cm)/plant	plant	No./plant	plant	(cm)/ plant
D.S.	155.00ª	5 50 ^a	4 20etgh	1 10 ^a	34 00 ^h	16 33 ^{ab}	3 53 ^{bc}	44 30gh
N.C.	122 00 ^a	6 37a	3 33h	1 30a	RO 33 bcdefgh	16 33 ^{ab}	6 77abc	62 ODabcde
	110 228	A 70a	A OObcdefgh	0.778	105 2 3 abcdef	6 DObe	7 57abc	<1 62 bcdefg
5010	CC.711	1.10	4.90	1.003	deoo 211	0.00 1 / 0.0ahc	1.31	1 co.1 c
D154	140.35	0.45	/.5/	.07.1	110.00	10.00	00.0	40.8/
D_1S_5	134.67^{a}	5.87 ^a	7.60 au	0.83"	100.00 aucueig	8.33	2.50	50.20 cuergin
D_1S_6	162.33^{a}	5.50^{a}	7.50^{abc}	1.10^{a}	77.67 ^{bcdetgh}	8.33 ^{bc}	5.37 ^{abc}	47.37 ^{detgh}
DiSt	154.33^{a}	5.57 ^a	4.63 ^{cdefgh}	1.23 ^a	98.67 ^{abcdefg}	5.67°	7.57 ^{abc}	45.93 ^{fgh}
D.S.	157 33ª	5 57a	C 53abcdefg	1 30 ^a	105 32abcdef	& ODbc	7 67abc	57 A 7bcdefg
202		10.0	C. J. ahodefoh	00.1	10	0.00	1.0/	14.41
$D_{2}S_{3}$	100.0/	5./0	5.15 ^{mme}	0.11	106.00	13.6/	/.1/	64.50
D_2S_4	143.00^{a}	5.50^{a}	4.37 ^{dergn}	1.03^{a}	34.33 ⁿ	7.3300	3.5300	42.93 ^{gn}
D,S,	178.00^{a}	6.37^{a}	3.77^{gh}	0.73^{a}	73.67 ^{cdefgh}	8.00 ^{bc}	$6.77^{\rm abc}$	45.57 ^{fgh}
D.S.	174.67 ^a	4 70 ^a	4 57 ^{cdefgh}	1 23 ^a	95 00 ^{abcdefg}	14 33 ^{abc}	7 57abc	37 83 ^{gh}
0270	127 67a	6.13a	< 07abcdefgh	1 02a	100 67abc	13 00bc	< < Oabc	A 2 70 cdefgh
1000	10.101	0.+.0	C.O.abcdef	E00.0	122.01	odec 1	0.00	71 oobcdefe
D352	100.0/	.07.0	0.83	0.90	90.0 / John Particip	14.55	2007	.102.10
D_3S_3	137.00^{4}	5.50 ^a	7.93 ^a	0.77^{a}	74.00 ^{cuergn}	7.3300	8.70 ^{ab}	44.90^{80}
D_3S_4	117.00^{a}	5.57 ^a	7.27 ^{abcd}	0.83^{a}	100.33 ^{abcdefg}	8.33 ^{bc}	7.57 ^{abc}	41.37^{gh}
D.S.	127 00 ^a	5 57a	4 1 7 efgh	0 93ª	103 00abcdefg	& ODbc	7 67abc	42 60 ^{gh}
500	126 678	5 10a	< 1 Oabcdefgh	1 274	107 67abcde	7 2 2 bc	6 1 2 abc	41 07gh
D326	10.001	0/.0	2.1U	1.01	10/.0/	1.33 April 1	0.13	41.0/~
D451	1 /0.00	5./0	5.5/	1.10	/0.55	0.0/	/.0/	00.29
D_4S_2	172.00^{a}	6.33 ^a	6.63 ^{abcdetg}	0.93^{a}	68.00 ^{detgn}	13.00^{abc}	2.37°	61.43 ^{abcdet}
D_4S_3	162.00^{a}	5.70^{a}	6.13 ^{abcdetgh}	1.07^{a}	66.33 ^{detgh}	19.00^{a}	3.23^{bc}	72.27^{a}
D.S.	120.00^{a}	5.50^{a}	4.37^{defgh}	1.37^{a}	75.67 ^{bcdefgh}	12.67^{abc}	5.87^{abc}	47.13^{defgh}
D.S.	151.33 ^a	6.00 ^a	3.77 ^{gh}	0.93^{a}	68.67 ^{defgh}	10.00 ^{abc}	9.30^{a}	44.43 ^{gh}
D.S.C	178 67 ^a	617a	4 00 fgh	1 00 ^a	R1 67bcdefgh	7 33bc	6 03 abc	53 07bcdefg
000	146.00ª	5 77a	7 03 abcde	0.77a	12A DOabc	12 67bc	2 22bc	67 17ab
1050	152 008	5 70a	hablanc h	1.1.2a	1.24.00 フィックcdefgh	10.01 ofcc o	7.00 abc	50 orbcdeft
U502	00.001	0/.0	- 00.4	CI.1		o.oo	7.00ahc	20.00
D553	1/0.33	5.75	5.5 / c.5	1.35	124.00 ^{m2}	10.00	6.30	04.2/m
D_5S_4	153.00	5.47ª	3.73 ⁸⁰	1.30	69.33 ^{uergu}	10.00	6.73 auc	43.87 ⁸⁰
D_5S_5	141.00^{a}	5.40^{a}	4.63 ^{cdeign}	0.90^{a}	75.33 ^{bcdeign}	14.00^{abc}	6.30 ^{abc}	40.67 ⁸ⁿ
D_5S_6	142.33^{a}	5.70^{a}	4.80^{bcdetgh}	0.87^{a}	66.00^{detgn}	10.00^{abc}	3.60^{bc}	49.87 ^{cdelgn}
D_6S_1	154.00^{a}	5.87^{a}	$3.77^{\rm gh}$	0.97^{a}	114.00^{abcd}	13.67^{abc}	6.37^{abc}	46.20^{efgh}
D.S.	154.67^{a}	5.70^{a}	7.60^{ab}	0.93^{a}	75.67 ^{bcdefgh}	8.33 ^{bc}	7.40^{abc}	48.87 ^{cdefgh}
D ₆ S ₂	163.00^{a}	6.83^{a}	7.63^{ab}	0.83^{a}	133.33 ^a	19.33^{a}	8.83 ^{ab}	38.10^{8h}
D.S.	162.00 ^a	4.93ª	5 47abcdefgh	1.03ª	56.00 ^{fgh}	8.00 ^{bc}	5.17abc	44.33 ^{gh}
D'S'	135 33ª	4.60 ^a	3 87 ^{gh}	1 40 ^a	53 678h	6 33bc	5 33abc	35 17h
500	110.008	1 60a	A Cocdefeb	0.07a	57 Onefah	1 2 Doabe	r 1 abc	AC CTEh
D656		4.00	4.00	1.8/	- 00'/C	13.00	2.11	-/0.04
In each column	, means with the s	imilar letters are n	not significantly dif	ferent at 5% level	of probability us	ing LSD test. D ₁ ,	D_2 , D_3 , D_4 , D_5 and D_{14}	D ₆ , respectively the
3 00. 4.00 and 5	00 o/l Nano-fertil	izer annlied as sni	00 g/put ut ivanu-ix	arunzer appueu as		2, 03, 04, 05 and 00	enonananinanoni	01 0.00, 1.00, 2.00,
	A	do on possidon 1070	· fm					

Table 1. Effects of the different treatments on morphological characters of box tree (Buxus hyrcana).

			Mean of values		:	:
Treatments	Dry weight (g)/plant	Fresh weight (g)/plant	Proliferation rate/ plant	Productivity/ plant	Root diameter (cm)/plant	Stem diameter (cm)/plant
D ₁ S ₁	55.37 ^{cd}	91.00 ^a	57.93 ^a	8.41 ^a	0.29 ^a	0.36 ^{bc}
D_1S_2	145.33 ^{abcd}	218.17 ^a	92.40^{a}	20.97^{a}	0.33 ^a	0.42^{bc}
D_1S_3	38.10 ^d	62.30^{a}	60.70^{a}	38.31 ^a	0.37^{a}	0.52^{bc}
D_1S_4	117.53 ^{abcd}	143.80^{a}	58.13 ^a	19.49^{a}	0.28 ^a	0.92^{ab}
D_1S_5	46.33 ^{cd}	70.53^{a}	31.13^{a}	10.05^{a}	0.35^{a}	0.37^{bc}
D_1S_6	95.10^{abcd}	119.50^{a}	57.80^{a}	20.20^{a}	0.25^{a}	0.62^{bc}
D,S,	148.66 ^{abcd}	203.53 ^a	41.77^{a}	43.88^{a}	0.38^{a}	0.38^{bc}
D,S,	142.60 ^{abcd}	186.53 ^a	76.20^{a}	41.40^{a}	0.47^{a}	0.42^{bc}
D ₅ S ₃	171.53 ^{abcd}	220.47^{a}	54.07 ^a	39.65 ^a	0.42 ^a	0.37°
D_2S_4	172.67 ^{abcd}	202.43^{a}	35.67^{a}	9.02 ^a	0.31 ^a	0.58 ^{bc}
D,S,	49.60 ^{cd}	69.63 ^a	63.13 ^a	21.89^{a}	0.31 ^a	0.40 ^c
D'S6	85.53 ^{abcd}	119.17^{a}	57.80^{a}	35.18 ^a	0.33^{a}	0.36^{bc}
D _i S _i	89.30 ^{abcd}	143.57 ^a	55.10^{a}	20.25^{a}	0.30^{a}	0.36^{bc}
D ₃ S,	54.27 ^{cd}	83.77 ^a	45.07^{a}	13.58 ^a	0.31 ^a	0.51 ^{be}
D_3S_3	78.37 ^{abcd}	110.27^{a}	66.50 ^a	27.08^{a}	0.31 ^a	0.56 ^{bc}
D ₂ S ₄	73.20 ^{bcd}	108.93 ^a	73.07^{a}	44.31 ^a	0.32 ^a	1.31ª
D.S.	116.67 ^{abcd}	161 77 ^a	62.40 ^a	30 40 ^a	035ª	0.34°
DS	128.77 ^{abcd}	100.37 ^a	55.73 ^a	48.14 ^a	0.32 ^a	0.49bc
D.S.	217.20 ^{ab}	077.73ª	47.20 ^a	30.08ª	0.43 ^a	0.35°
D'S'	107.33 abcd	182.00 ^a	40.67^{a}	11.44 ^a	0.39 ^a	0.62 ^{bc}
D.S.	99 47 abcd	143.83 ^a	85.80 ^a	20.81 ^a	0.42 ^a	0.32°
D'S'	44.03 ^{cd}	72.93 ^a	58.23ª	16.80 ^a	0.30ª	0.41 ^{bc}
DiSe	110.50 ^{abcd}	161.47 ^a	51.40^{a}	39.80^{a}	0.45^{a}	0.50 ^{bc}
D'S,	143.07 ^{abcd}	184.13 ^a	51.80^{a}	25.01 ^a	0.40^{a}	0.33°
D.S.	169.70 ^{abcd}	255.00^{a}	71.73^{a}	21.03 ^a	0.39^{a}	0.33°
D,S,	160.40^{abcd}	206.37^{a}	73.00^{a}	37.45 ^a	0.40^{a}	0.33°
D,S,	133.53 ^{abcd}	185.27 ^a	49.60^{a}	28.25 ^a	0.37^{a}	0.40^{bc}
D_5S_4	93.77 ^{abcd}	136.23^{a}	62.73 ^a	31.39^{a}	0.35 ^a	0.40^{bc}
D ₅ S ₅	211.50^{ab}	260.00^{a}	72.57 ^a	18.46^{a}	0.27^{a}	0.33°
D ₅ S ₆	132.33 ^{abcd}	190.73^{a}	71.20^{a}	33.15 ^a	0.41^{a}	0.33°
D ₆ S ₁	131.47 ^{abcd}	184.13 ^a	71.93^{a}	25.20^{a}	0.36 ^a	0.33°
D.S.	181.73 ^{abc}	70.60^{a}	45.07^{a}	21.68^{a}	0.39ª	0.37°
$\mathbf{D}_{\mathbf{s}}\mathbf{S}_{\mathbf{s}}$	147.97 ^{abcd}	199.93 ^a	133.53 ^a	24.84^{a}	0.36^{a}	0.48^{bc}
DeSa	90.03 ^{abcd}	128.60^{a}	41.30 ^a	21.71 ^a	0.42 ^a	0.53 ^{bc}
D'S'	213 70 ^a	250 73ª	$41 47^{a}$	16.15ª	0.47a	0 37bc
DeSe	106.37 ^{abcd}	150.30 ^a	64.73ª	18.00 ^a	0.44 ^a	0.35°
In each column	means with the sin	nilar letters are not s	ionificantly different at 5	% level of hrohabili	tv neino I SD tect D.	D. D. D. D. and D.
recreatively the	concentrations of 0	00 0.60 1.20 1.80	7 40 and 3 00 a/not of	Nano-fertilizer annlie	d as drench and S. S	C2, U3, U4, U3 unv U9,
responsion of		0 4 00 and 5 00 all NI	to up and our num of the			2, 33, 34, 35 and 30, ar
concentrations of	U.U. 1.UU, 2.UU, 2.UU	N, 1/g UU.C DHD UV.4.U	ano-rerunzer appueu as sp	ray.		

Table 2. Effects of the different treatments on morphological and physiological characters of box tree (Buxus hyrcana).

				Mean of values			
Treatments	Content of Fe (ppm)/plant	Content of K (ppm)/plant	Content of P (ppm)/plant	Content of N (%)/plant	Total chlorophyll content (mg/m	Chlorophyll b content (mg m ⁻¹	Chlorophyll a content (mg/m
					F.W.)/plant	F.W.)/plant	F.W.)/plant
D_1S_1	80.80 ^{cdet}	37.43 ^{et}	112.50°	0.11 ^b	1.71 ^p	0.56 ^s	1.17
D_1S_2	47.60 ^{thtm}	29.22 ^m	108.30^{n}	0.44^{ab}	6.41 ^a	2.98^{a}	3.28 ^{bcd}
D_1S_3	54.27 ^{hijkim}	41.26^{0}	122.30^{h}	0.24^{ab}	4.83 ^{de}	2.35°	2.44 ^{ghu}
D_1S_4	48.43 ^{ukim}	39.43 ^d	52.68 ^z	$0.14^{\rm b}$	2.56°	0.83 ^r	1.64 ^m
D_1S_5	66.23 etghu	31.24 ^p	107.20°	0.21^{ab}	2.72°	1.12 ^p	1.58 ^m
D_1S_6	48.87 ^{ijklm}	39.72 ^{cd}	135.00°	0.17^{ab}	3.68 ^{Im}	1.31 ^{mno}	2.33 ^{hij}
D_2S_1	43.50 ^{ijklm}	38.36°	90.57 ^w	0.11^{b}	3.99 ^{hi}	1.66 ^{fghij}	2.33 ^{hij}
D_2S_2	57.70 ^{ghijkl}	33.02 ^{mn}	115.30^{1}	0.25^{ab}	2.75°	1.17 ^{op}	1.66 ¹
$D_{3}S_{3}$	49.57 ^{ijklm}	32.33 ^{no}	34.64 ^z	0.12^{b}	4.43 ⁸	1.72 ^{efgh}	2.65 ^{fghi}
D_2S_4	151.00^{b}	32.77 ^{mm}	95.97 ^t	0.20^{ab}	4.05 ^{hi}	1.69 ^{fghij}	2.34 ^{hij}
D,S,	48.90 ^{ijklm}	27.43 ^s	92.23 ^v	0.39^{ab}	5.02 ^{cd}	1.84 ^{ef}	2.92^{def}
D_2S_6	93.90 ^{cd}	40.60^{bc}	112.50^{m}	0.13^{b}	3.28 ⁿ	1.52 ^{ijkl}	1.73 ^{kl}
D ₃ S ₁	47.10 ^{ijklm}	36.73^{fg}	77.752	0.12^{b}	3.71^{klm}	1.58 ^{hijkl}	2.13 ^{jk}
D_3S_2	43.27 ^{ijklm}	29.35^{q}	131.80°	0.26^{ab}	4.85 ^{de}	1.90^{de}	2.96 ^{cdef}
D_3S_3	47.87 ^{ijklm}	30.88 ^p	103.90^{q}	0.25^{ab}	6.49^{a}	3.04^{a}	$3.38^{\rm b}$
D_3S_4	$30.80^{\rm m}$	30.47 ^p	90.56	0.14^{b}	4.13^{hi}	1.41 ^{hnn}	2.66 ^{fghi}
D_3S_5	35.93 ^{Im}	28.35^{rs}	80.05	0.40^{ab}	3.76 ^{jkl}	1.61 ^{fghi}	2.11 ^{Jk}
D_3S_6	292.50 ^a	34.58 ^{kl}	108.90^{n}	0.22^{ab}	1.87^{p}	1.10^{pq}	2.72 ^{efgh}
D_4S_1	51.80 ^{hijklm}	28.45 ^{qr}	106.10^{p}	0.05^{b}	2.58°	1.10 ^{pq}	1.52 ^{lm}
D_4S_2	40.67 ^{jklm}	24.35	88.82 [×]	0.63^{a}	6.86^{a}	2.27°	4.02 ^a
D_4S_3	85.53 ^{cdef}	36.01 ^{ghu}	200.20^{a}	0.36^{ab}	4.80^{ef}	2.04 ^d	3.21 ^{bcd}
D_4S_4	65.60 ^{etghijk}	36.59 ^{tgh}	149.20^{b}	0.11 ^b	2.75°	1.23 ^{nop}	1.62 ^m
D_4S_5	39.13 ^m	35.48 ^{uk}	94.45	0.43^{ab}	4.64 ^{erg}	1.52 ^{jkt}	3.09 ^{bcde}
D_4S_6	39.87	35.20	134.00	0.15°	6.05"	2.61	3.36%
D ₅ S ₁	44.03 JAIN.	36.63 %	99.57	0.07°	1.93 ^p	0.76	1.25
D_5S_2	90.17 ^{ue}	39.83	71.69*	0.49	4.59%	1.77 ^{erg}	2.75 ^m
D ₅ S ₃	46.33 years	44.88"	57.62*	0.15	3.95"	1.63 guilt	2.33 ^{ml}
D ₅ S ₄	59.80 miles	35.63	199.70	0.21^{av}	4.65	1.80 ***	2.79 ^{mg}
D ₅ S ₅	75.67ueign	35.23 ^m	100.80	0.25^{av}	3.53"	1.22 ^{op}	2.32
D ₅ S ₆	102.20	33.61	121.30	0.13	3.50	1.20%	2.32
D_6S_1	106.20°	38.33°	118.60	0.12°	4.11 ^m	1.54 ^{mjkt}	2.51 Bmj
D_6S_2	67.43 ^{ergm}	31.39 ^{ob}	125.10 ^e	0.19^{ab}	4.21 ⁿ	1.47 ^{km}	2.71 ^{ergm}
D_6S_3	82.60 ^{cdefg}	36.51 ^{fgh}	134.50^{cd}	0.12^{b}	3.92 ^{ijk}	1.53 ^{ijkl}	2.40 ^{ghuj}
D_6S_4	87.53 ^{ghijkl}	33.39 ^{Im}	107.40°	0.11 ^b	2.61°	$0.93^{\rm { tr}}$	1.67^{1}
D ₆ S,	57.53 ^{ghijkl}	36.23 ^{ghi}	129.30^{f}	0.16^{ab}	3.27 ⁿ	1.15 ^{op}	2.16
D_6S_6	70.30^{f}	23.70 ^t	117.70 ^k	0.07^{b}	5.08°	2.25°	2.77 ^{efg}
amiloo dooo al	moone with the cimiler	latters are not sign	ificantly different	at 50/ laval of ano	hobility neiner I SD +		and D reconcilivativ
the concentration	, incans with the similar	1 80 2 40 and 2 00	introducty different	tilizer annlied as	drench and S. S. S.	CSL U1, U2, U3, U4, U	s allu D6, respectively
1 00 2 00 3 00	0115 01 V.VV, V.VV, 1.4V,	four transformer for the four former of the	g put ut train-iu	uiizei appiida a	יס יזה יוה חווחווחוו	3, 04, 05 and 06, mr	Ulcelluauous or o.vo,
1.00, 2.00, 0.01	, 4.00 and 5.00 g/1 ivano	-teruitzer appueu a	s spray.				

Table 3. Effects of the different treatments on physiological characters of box tree (Buxus hyrcana).

							Mean o	of squares					
Source of variations	df	Proliferation rate	Productivity	Root diameter	Stem diameter	Root volume	Leaf length	Leaf No.	Root No.	Root length	Node No.	Plant height	Shoot No.
Replication	7	708.31	204.95	0.02	0.01	471.23	0.05	361.00	1.58	0.17	3.73	91.64	4.14
Treatment	35	1041.32 ^{ns}	343.92 ^{ns}	0.01 ^{ns}	0.12**	943.65*	0.12 ^{ns}	1914.97**	5.91**	0.75**	39.62**	248.73**	9.88**
Error	70	1098.51	387.61	0.01	0.02	570.25	0.13	185.35	0.61	0.38	7.59	17.99	2.10
CV		54.77	75.93	28.52	34.39	16.00	35.04	15.81	14.68	10.95	25.58	8.49	24.33
* And **: Signif	icant	at $\alpha = 5\%$ and 19	%, respectively,	"s: not signif	icant.								
A A A A A A A A A A A A A A A A A A A													

÷	
B	
a	
2	
2	
-	
12	
N	
3	
80	
5	
e	
e	
	
×	
•	
q	
f	
•	
2	
e	
ct	
50	
=	
50	
5	
=	
50	
·	
00	
Ĭ	
.9	
S	
£	
d	
-	
pr	
a	
5	
<u> </u>	
0.0	
_	
6	
P	
d.	
E	
ă	
=	
=	
•	
\$	
E	
e	
E	
=	
8	
2	
Ŧ	
Ħ	
5	
-	
e	
÷	
i p	
4	
Ā	
+	
of	
-	
5	
fe	
f	
Je	
t	
-	
9	
0	
5	
E	
ia	
1	
V.S	
-	
0	
2	
÷	
18	
7	
4	
4	
e	
q	
3	
E	

Table 4. Continued.

Source of						Mean of squares				
variations	df	Fresh	Dry	Chlorophyll a	Chlorophyll b	Total chlorophyll	Content of	Content of P	Content of	Content of
		weight	weight	content	content	content	N		K	Fe
Replication	7	261.28	1900.67	0.47	0.004	0.018	0.048	1.00	0.138	1.81
Treatment	35	10599.57 ^{ns}	7222.46**	1.20^{**}	0.98**	4.33**	0.054**	3326.60**	66.29**	638.75**
Error	70	1246.30	1382.25	0.014	0.003	0.004	0.019	0.054	0.085	5.57
CV		21.83	31.10	4.89	3.41	1.65	62.75	0.21	0.85	5.10

* And **: Significant at a = 5 and 1%, respectively, ^{NS}: Not significant.

Maximum fresh (272.73 g) and dry weight (217.20 g) were obtained in D_4S_1 (Table 2). Most of Nano-fertilizer treatments led to increments of more leaf fresh and dry weights of box tree in comparison to the control. Similar results were reported by Sabir *et al.* (2014) on grapevines and Tarafdar *et al.* (2014) on *Pennisetum americanum*. The most productivity (48.14) was obtained in D_3S_6 (Table 2). The least productivity (8.41) was calculated in control plants. The highest proliferation rate (133.53) was obtained in D_6S_3 , the treatment that we focused on it (Table 2). The lowest proliferation rate (31.13) was seen in D_1S_5 .

Nano-fertilizer notably enhanced the concentrations of N, P, K and Fe in leaves (Table 3). The highest amount of N (0.63%) was obtained from D₄S₂ (Table 3). This amount is six times higher than the amount of N in control plants (0.11%). Conversely, the least values on N (0.04%) were determined in plants treated with highest concentrations of Nano-fertilizer (3.00 g/pot drench + 5.00 g/l spray). The highest rate of P (200.20 ppm) in leaves was obtained from D_4S_3 (Table 3). This amount is two times higher than the amount of P in control plants (112.50 ppm). Maximum K (44.88 ppm) in leaves was calculated from D_5S_3 (Table 3). Minimum K (23.70 ppm) was obtained in plants treated with the highest concentrations of Nano-fertilizer (3.00 g/pot drench + 5.00 g/l spray) (Table 3). The most rate of Fe (292.50 ppm) in leaves was obtained from D_3S_6 (Table 3). The least rate of Fe (30.80 ppm) was determined in D_3S_4 (Table 3). Leaf treatments with Nano-fertilizer had significant positive effects on the leaf N, P, K and Fe contents compared with control. Similar results reported by Sabir et al. (2014). Contrary to our findings, some researchers demonstrated that leaf blade N, P and K concentrations did not significantly differ among the treatments (Poni et al. 2003, Arrobas et al. 2014). Such different results among the studies might be due to the differences between fertilizer, ecologies and plant genotype. In many studies, the effectiveness of Fe treatment was greatly variable due to the several plantrelated, environmental and physicochemical factors that may affect the physiology of plant in different ways (Abadía et al. 2011, Sabir et al. 2014). Fernández et al. (2009) showed that foliar application of different Fe-containing compounds increased Fe concentration in peach leaves.

The highest chlorophyll a and total chlorophyll concentration (4.02 and 6.86 mg/g F.W., respectively) was determined in D_4S_2 (Table 3). The highest chlorophyll b (3.04 mg/g F.W.) was determined in D_3S_3 (Table 3). The least concentration of all chlorophylls was seen in control plants. Our results revealed that all treatments significantly increased the leaf chlorophyll contents of box tree. The least chlorophyll content was determined in leaves of untreated box tree. This result is consistent with Sabir *et al.* (2014). The results of Tarafdar *et al.* (2014) on *Pennisetum americanum* demonstrated that photosynthetic pigment chlorophyll was increased by 24.4%, by application of Zn Nano-fertilizer at 10 mg/l concentration with respect to control. Increasing the chlorophyll content in leaves treated with Nano-fertilizer in current study is because of the presence of Fe and Zn in this fertilizer.

When the application forms of Nano-fertilizer (drench and foliar spray) were compared with each other, significant differences between traits were observed. Totally, spray application was better than drench. Similar results on some plants were reported (Karp *et al.* 2002, Mohammadipoor *et al.* 2013). It seems that in the indexes of corresponding to the root such as fresh and dry weight of roots, soil method is better because of more activity of root for nutrient uptake from medium and increases this indexes (Mohammadipoor *et al.* 2013). This matter can be useful for plants that their ground part is important and economic. Soil application was not a suitable method. Similar results were reported by some other researchers (Erdal *et al.* 2002). This decrease in the concentration of the elements on soil application treatment can be due to low speed of iron intake and transmission from this fertilizer that causes disturb the balance of nutrients absorption such as P and K in soil.

References

- Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Alvarez-Fernández A and López-Millán AF 2011. Towards a knowledge based correction of iron chlorosis. Plant Physiol. Biochem. 49: 471-482.
- Arrobas M, Ferreira IQ, Freitas S, Verdial J and Rodrigues MÂ 2014. Guidelines for fertilizer use in vineyards based on nutrient content of grapevine parts. Sci. Hortic. **172**: 191-198.
- Bozorghi HR 2012. Study effects of nitrogen fertilizer management under Nano iron chelate foliar spraying on yield and yield components of eggplant (*Solanium melongena* L.). ARPN J. Agric. Biol. Sci. **7**(4): 233-237.
- Erdal I, Yilmaz A, Taban S, Eker S and Cakmak I 2002. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J. Plant Nutr. **25**: 113-127.
- Fernández V, Orera I, Abadía J and Abadía A 2009. Foliar iron-fertilization of fruit trees: resent knowledge and future perspectives, a review. J. Hortic. Sci. Biotechnol. 84: 1-6.
- Ghormade V, Deshpande M and Paknikar KM 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotech. Adv. 29: 792-803.
- Ihsan M, Mahmood A, Mian MA and Cheema NM 2007. Effect of different methods of fertilizer application to wheat after germination under rainfed conditions. J. Agric. Res. **45**: 277-281.
- Inubushi K, Goyal S, Sakamoto K, Wada Y, Yamakawa K and Arai T 2000. Influences of application of sewage sludge compost on N₂O production in soils. Chemos. Glob. Chang. Sci. 2: 329-334.
- Karp K, Starast M and Kaldmae H 2002. Influence of the age of plants and foliar fertilization on the yield of strawberry cultivar Jonsok under plastic mulch. Acta Hortic. 567: 459-562.
- Martens DC and Westermann DT 1991. Fertilizer applications for correcting micronutrient deficiencies. In: Alloway BJ, editor. Micronutrient Deficiencies in Global Crop Production. Springer, p. 549.
- Matthews GA 2008. Developments in application technology. Environmentalist 28: 19-24.
- Mohammadipoor R, Sedaghathoor Sh and Mahboub Khomami A 2013. Effect of application of iron fertilizers in two methods 'foliar and soil application' on growth characteristics of *Spathyphyllum illusion*. Eur. J. Exp. Biol. **3**(1): 232-240.
- Orhan IE, Sinem Aslan Erdem, Fatma Sezer Senol, Murat Kartal and Bilge Sener 2012. Exploration of cholinesterase and tyrosinase inhibitory, antiprotozoal and antioxidant effects of *Buxus sempervirens* L. (boxwood). Indus. Crops Prod. **40**: 116-121.
- Poni S, Quartieri M and Tagliavini M 2003. Potassium nutrition of cabernet sauvignon grapevines (*Vitis vinifera* L.) as affected by shoot trimming. Plant Soil **253**: 341-351.
- Rai V, Acharya S and Dey N 2012. Implications of Nanobiosensors in agriculture. J. Biomaterials Nanobiotech. 3: 315-324.
- Sabir A, Yazara K, Sabira F, Karaa Z, Atilla Yazicib M and Goksu N 2014. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (*Ascophyllum nodosum*) and nanosize fertilizer pulverizations. Sci. Hortic. **175**: 1-8.
- Tarafdar JC, Raliya R, Mahawar H and Rathore I 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (*Pennisetum americanum*). Agric. Res. **3** (3): 257-262.

(Manuscript received on 30 August, 2015; revised on 4 February, 2016)

1142